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ABSTRACT 

This thesis develops an Operator’s Model that mimics the real-world behavior of coal 

transport in the Port of Pittsburgh and allows for systematic investigation of “what if” 

disruption scenarios. We model the multi-modal flow of coal using a network of nodes 

and arcs representing river transport, with support from a surrounding system of rail lines 

and roads. Each mode of shipment has finite capacities with varying costs. Our model 

routes flows in order to satisfy contracted supplies and demands at minimum 

transportation cost. We use 2009 coal shipment data provided by the United States Army 

Corps of Engineers to drive delivery patterns. We focus our attention on the 

Monongahela River, which carries a significant amount of coal through our system. We 

employ Defender-Attacker-Defender techniques to assess critical infrastructure in the 

context of an intelligent adversary, such as a terrorist, who seeks to damage the system so 

as to maximally increase its operating cost. This allows us to assess the relative 

importance of critical system components in order to help the United Stated Coast Guard 

identify where to focus their attention.   
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EXECUTIVE SUMMARY 

The United States (U.S.) economy is dependent upon coal to produce low cost energy and 

to manufacture steel. The Three Rivers region of Pittsburgh, Pennsylvania—consisting of 

the Ohio River, the Allegheny River, and the Monongahela River—sits on one of the 

richest coal reserves in the U.S.. The Port of Pittsburgh stretches over more than 

300 miles of river and supports an extensive coal mining and coal consuming industry. 

Nearly $9 billion of commerce flows through this river system annually, making it the 

second largest inland port in the U.S. and a valuable target for terrorist attack. The United 

States Coast Guard (USCG) is responsible for safe, uninterrupted transport (and 

coordinated security) along these inland waterways, and this port is of particular 

importance to this mission. 

Coal is delivered from mines to plants primarily via the river, with support from a 

surrounding system of rail lines and roads. Transporting coal by barge on river is the 

most economical and efficient means of delivery. Rail offers a more costly alternative, 

and trucks on roads are the most expensive method of transportation. Loading and 

offloading coal are also costly processes.   But these costs are small relative to the huge 

financial loses and catastrophic facility shutdowns that could occur if coal was unable to 

move from supplier to consumer for an extended period of time. 

 The primary contribution of this thesis is the development of an Operator’s Model 

that mimics the behavior of coal transport in the Port of Pittsburgh and allows for 

systematic investigation of “what if” scenarios. We model the multi-modal flow of coal 

using a network of nodes and arcs. Each mode of shipment has finite capacities with 

varying costs. Our model routes flows in order to satisfy contracted supplies and demands 

at minimum transportation cost. We use real-world 2009 data provided by the United 

States Army Corps of Engineers to drive delivery patterns. 

We employ Defender-Attacker-Defender techniques to assess critical 

infrastructure in the context of an intelligent adversary, such as a terrorist, who seeks to 

damage the system so as to maximally increase its operating cost. Key assets in our 

system include dams, which segment the rivers into pools and maintain water levels that 



 xvi

enable navigability; locks, which allow for transit between these pools; bridges, which 

connect land masses by crossing over rivers; and intermodal transfer equipment, which 

loads and offloads cargo and facilitates transfer between rivers, roads, and rails. 

We focus our attention on the Monongahela River, which carries a significant 

amount of coal through our system. Our model first analyzes normal operating 

conditions, routing coal by barge, and then considers the effects of disruptions to the river 

system. We identify interdictions that result in worst-case disruptions, where “worst-

case” means the highest total cost even after the system has rebalanced flows. The model 

illustrates rerouting behaviors and impact costs associated with operating in this damaged 

system. This helps us assess the relative importance of critical system components to help 

the USCG to identify where to focus its attention.  

We observe that a single attack on the pool connecting the Monongahela River to 

the rest of the Pittsburgh Port incurs significant cost increases. Attacking the dam 

supporting this pool renders the pool useless. Subsequent “next best” attacks also target 

other dams and eventually some locks. Each disruption to the river unavoidably increases 

traffic on other modes of transport, increasing overall cost.     

We consider two alternative scenarios. First, we analyze a situation in which we 

assume that the USCG can perfectly protect the dams from attack. Defending dams 

causes the attacker to target locks instead, thereby decreasing the worst-case cost of an 

attack on an unprotected system. The second scenario is a situation in which the USCG 

can perfectly protect both dams and locks. With the water protected, the attacker can only 

target land-based terminals, rail segments and road segments. However, an attacker still 

has the ability to isolate a major coal supplier from the network by interdicting river, rail, 

and road intermodal transfer arcs connecting the supplier to the rest of the world. Because 

our model highly penalizes such infeasibilities, the cost skyrockets, as the coal supplier is 

unable to move cargo onto the system. 

Our model can be applied to others ports within the Inland Waterway System, 

however doing so will require significant effort to develop the appropriate input data and 

exercise various what-if scenarios of interest.  
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I. INTRODUCTION 

 The United States relies on low-cost transportation of goods. Bulk shipment of 

commodities is vital to the U.S. economy and its national security. A complicated 

network of rivers, rail lines, and roads enable the surface movement of large quantities of 

raw materials across the country. Despite the ubiquity of air transport, most physical 

goods move by ground, as their value per unit weight does not justify air delivery 

(Research and Innovative Technology Administration Bureau of Transportation Statistics 

2002). The primary commodity transported by river and rail in the U.S. is coal. Coal is an 

industrial and residential necessity, providing heat, electricity, and a means to produce 

steel. A disruption to this network could inflict costly consequences, as frustrated 

shipments attempt to find new delivery routes.   

 The Three Rivers region of Pittsburgh, Pennsylvania sits on one of the richest coal 

reserves in the U.S.. The Monongahela and Allegheny Rivers converge to form the Ohio 

River at the Point of Pittsburgh. These three rivers stretch more than 300 miles and define 

the area known as the Port of Pittsburgh. The United States Army Corps of Engineers 

(USACE) ranks the Port of Pittsburgh as the second busiest inland port in the United 

States (USACE 2012). The Port of Pittsburgh Commission (PPC) provides extensive 

information regarding locks, dams, and river characteristics (PPC 2012a). The Ohio River 

connects the Port of Pittsburgh to the rest of the Inland Waterways System, a system of 

more than 25,000 miles of navigable waters in the Eastern United States (Figure 1). Coal 

and other commodities are transported into and out of the region via barge on this river.  
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Figure 1.   The Inland Waterway System. Source: PPC 2012b. 
 
 The Port of Pittsburgh is regulated by a series of locks and dams and provides the 

primary means of coal delivery to power companies and steel producers in the area. 

Labor disputes, natural disasters, terrorist attacks, and even anticipated maintenance on 

the existing infrastructure can disrupt the function of this system. A catastrophic 

disruption to the coal-delivery supply chain could cause national consequences, including 

a rise in utility costs and steel prices. The Port of Pittsburgh Commission reports that 

“inland waterway transportation is generally the least-costly transportation mode. 

Average cost ranges between $0.005 and $0.01 per ton-mile of cargo moved. This 
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compares to nearly $0.05 for rail and $0.10 for truck” (PPC 2012b). Therefore, 

stakeholders are intent on providing resilient transportation along these waterways to 

maintain low costs. 

 The enormous capacity of the river system and its low operating costs make it the 

primary means of bulk commodity shipment through the Port of Pittsburgh. Although 

there are multiple modes of transport for coal in this region, the large demand volumes 

make it cost prohibitive to supply adequate quantities in the long term by means other 

than river. Figure 2 shows cargo capacity of different modes of transport; clearly barges 

can carry much more cargo.   

 

 

Figure 2.   Comparison of cargo capacity of rail car, truck, and barge. Source: Port of 
Pittsburgh Commission, 2012c. 
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In practice, the most cost effective means for moving coal on the river is via 

multiple barges pushed by a single towboat. Figure 3 displays a “12-barge tow.” 

 

 

Figure 3.   The most economical way to move coal is by barge. Source: USACE 2012. 
 

The interdiction of coal delivery along these primary river-shipment routes would 

have dire implications. For purposes of this thesis, interdiction is the interruption of 

commodity movement through our system. Limited capacity and availability of rail cars 

calls into question the viability of trains. Additionally, transporting large volumes of coal 

via truck could place an extreme burden on the road network, causing immediate 

bottlenecks. Many coal consumers maintain some level of reserves on hand to mitigate 

fluctuations in delivery or consumption rates and for emergency situations. However, 

these reserves are finite, and steel manufacturers in the Pittsburgh region cannot run out 

of coal or they risk huge financial loses and catastrophic facility shutdowns.   

 The vulnerability of aging infrastructure along with economic significance makes 

Pittsburgh a real target. Protecting the city and its infrastructure is challenging—there are 

three modes of transportation and so many routes into the city that protecting them all is 

impossible. Potential attacks include blocking traffic through locks, destroying dams, 

dropping bridges that cross the rivers, or even attacking the commodity-carrying vessels. 

This infrastructure is not heavily guarded and is easily accessible. Protection of locks and 

dams from the shore is the responsibility of local municipalities, and defense from the 
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water resides with the United States Coast Guard (USCG). Bridges and slow-moving 

vessels (barges travel at an average speed of approximately 4 miles per hour) are very 

accessible, making them soft targets. Repairs subsequent to an attack on this aging 

infrastructure are estimated to require weeks to months, depending on the extent of the 

damage and the components damaged.    

 The USCG is tasked with ensuring economic stability and safe navigation of these 

waterways. One of the missions of the USCG is the protection of Ports, Waterways, and 

Coastal Security (PWCS).   

PWCS is the protection of the U.S. Maritime Domain and the U.S. Marine 
Transportation System (MTS) and those who live, work or recreate near 
them; the prevention and disruption of terrorist attacks, sabotage, 
espionage, or subversive acts; and response to and recovery from those 
that do occur. Conducting PWCS deters terrorists from using or exploiting 
the MTS as a means for attacks on U.S. territory, population centers, 
vessels, critical infrastructure, and key resources. PWCS includes the 
employment of awareness activities; counterterrorism, antiterrorism, 
preparedness and response operations; and the establishment and oversight 
of a maritime security regime. PWCS also includes the national defense 
role of protecting military out-load operations. (USCG, 2011) 

 In Pittsburgh, the USCG District 8 Command has jurisdiction for these 328 miles 

of river, which connect Pennsylvania, Ohio, and West Virginia. Complicating the USCG 

mission are the many bridges, projected reductions in USCG force size, and increased 

concern about terrorist attack in the post-9/11 era. Traditional security is only part of the 

solution. This infrastructure faces not only deliberate threats from terrorists and 

saboteurs, but it is also at risk to disruptions from engineering failures, accidents, and 

natural disasters. As demand for coal increases, rising shipping traffic and strains on 

infrastructure will result. The USCG needs to be able to identify worst-case disruptions in 

advance of their occurrence and no matter their cause.   

The solution to maintaining economic and industrial stability in the event of an 

attack is the development of a resilient system. For purposes of this thesis, we define 

resilience as the ability of a system to maintain its function in the presence of internal or 

external disruptions; this definition is consistent with that of the Homeland Security 

Advisory Council (HSAC 2006) and the Homeland Security Council (HSC 2007). Ways 
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to achieve such resiliency include increased capacity of infrastructure, improved 

protection of critical components, or cost-effective re-routing plans to optimally ship 

commodities in the event of disruption. The U.S. National Strategy for Homeland 

Security says, “we must now focus on the resilience of the system as a whole—an 

approach that centers on investments that make the system better able to absorb the 

impact of an event without losing the capacity to function” (HSC 2007).   

 The goal of this thesis is to assess the resiliency of the system of rivers, rails, and 

roads that move coal from mines to customers in the Pittsburgh area. We use Defender-

Attacker-Defender (DAD) techniques to identify which components to defend and 

provide minimum-cost solutions to routing in the event of failures in the system. By 

applying these methods to the Port of Pittsburgh, we assess the relative importance of 

critical system components in order to help the USCG identify where to focus its 

attention. 
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II. LITERATURE REVIEW  

 This thesis contributes to the body of existing works in the area of optimization, 

the defense of critical infrastructure, and the transportation of commodities. While the 

following related works are not exhaustive, they contain underpinnings vital to this work. 

A. CRITICAL INFRASTRUCTURE AND RISK  

 The National Infrastructure Protection Plan (NIPP) identifies critical 

infrastructure as, “systems and assets, whether physical or virtual, so vital to the United 

States that the incapacity or destruction of such systems and assets would have a 

debilitating impact on security, the national economy, national public health or safety, or 

any combination of those matters” (DHS 2009). 

Risks to infrastructure threaten lives, economic stability, and national security. As 

defined in the DHS Risk Lexicon (DHS 2010), risk is “potential for an unwanted 

outcome resulting from an incident, event, or occurrence, as determined by its likelihood 

and the associated consequences.”   (In general, we follow definitions put forth in this 

Lexicon.)  It is not enough to merely protect against initial attacks on critical 

infrastructure and key resources (CI/KR). As described in the NIPP, we must be prepared 

to (1) deter attacks, (2) endure their impact, and (3) regain normal operation as soon as 

possible (DHS 2009). The NIPP aims to deter, foil, or decrease the effects of purposeful 

attacks and to increase readiness, responsiveness, and resiliency of CI/KR in the event of 

an attack, natural disaster, or other emergency (DHS 2009). The NIPP promotes 

cooperation of private and government agencies in the development of prevention, 

response, mitigation, and recovery efforts. Providing security everywhere at all times is 

impossible with limited personnel, and building infrastructure that is completely resistant 

to attack is difficult with limited financial resources. This intentional defense guidance 

outlined in the NIPP fosters organizational cooperation to overcome inherent limits and 

achieve necessary readiness. 

The Marine Transportation Security Act (MTSA) of 2002 mandates that vessels 

and ports conduct vulnerability assessments as part of local Area Maritime Security Plans 

(Maritime Transportation Security Act of 2002). The USCG Captain of the Port is the 
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Federal Maritime Security Coordinator charged with oversight of the local Area Maritime 

Security Committee, who develops and implements those plans. 

 Guided by the NIPP, DHS evaluates risk as a function of threats, vulnerabilities, 

and consequences and then applies this definition of risk to deliberate and non-deliberate 

events indiscriminately. The DHS has adopted Probabilistic Risk Assessment (PRA) to 

estimate risk and prepare for potential threats from both natural causes and malicious 

enemies (see Bedford and Cooke. 2001. for an introduction to PRA). In this context, 

threat is the probability of attack, vulnerability is the conditional probability of success 

given an attack, and consequence is the result of successful attack, measured either in 

lives lost or dollars damage (DHS 2009). Examples of this PRA application in use are the 

Risk Analysis and Management for Critical Asset Protection (RAMCAP) (ASME 2011), 

the Terrorism Risk Assessment and Management (TRAM) toolkit (NRC 2010), and the 

Maritime Security Risk Analysis Model (MSRAM), employed by the USCG (GAO 

2010). Additionally, the DHS conducts data calls and information sharing to assess 

CI/KR and relies on the aggregate knowledge of its personnel to accurately assess 

vulnerability. By quantifying risk at each key component of a system, the goal of DHS is 

to allocate defense resources judiciously in order to mitigate risk. One example of these 

data-sharing efforts is the Constellation/Automated Critical Asset Management System 

(C/ACAMS, see DHS 2012 for details). This web-based tool allows users to access and 

share CI/KR information, assess vulnerabilities, and develop reaction plans. These types 

of information management and internal assessments, combined with probabilistic 

approach to attacks, drive DHS risk efforts and defense planning. 

 As documented by the National Research Council (NRC 2008, 2010) there are 

problems with these methods of evaluating risk. First, there is not enough historical data 

to assess probability of future terrorist attack, and it is questionable in this context 

whether past events are representative of future ones. Relying on subjective assessment 

from subject matter experts to assess probabilities has inherent biases and simply cannot 

be validated against ground truth. Second, deliberate attacks from an adversary are 

distinctly different from non-deliberate events, such as accidents, failures, or natural 

disasters, and should be handled separately. Acts of nature, for example, may be handled 



 9

with a probabilistic approach, as these acts happen as random occurrences based on 

seasonal or climatic conditions, or on engineering failures or operational errors, and 

historical data is readily available for characterizing these probabilities. Even human 

errors or mishaps can be characterized by probabilities. But, once an intelligent adversary 

enters the scenario, the rules change (see Engel 2011 for a detailed discussion). This 

adversary has harmful motives and accomplishes his intent through thoughtful planning 

and observation of CI/KR. The actions of this attacker are not random, but deliberate. To 

assume that an adversary behaves according to known probabilities would be to neglect 

the autonomous nature of the enemy at our own peril. 

 Brown and Cox (2011) raise additional issues with predicting risk based on 

subjective probability estimates of possible enemy actions. Specifically, they contend that 

dismissing the differences between scenarios involving intelligent adversaries and 

random threats can have significant consequences. They argue that threat–vulnerability–

consequence (TVC) formula “Risk = (Probability of attack) × (Probability that attack 

succeeds, given that it occurs) × (Consequence of a successful attack)” is a poor 

estimator of risk, amounting at best to a guess of potential risk. Additionally, they point 

out that PRA does not provide decision makers insight on where to invest resources to 

mitigate this risk and note that probabilities regarding enemy action may be impossible to 

correctly predict. Instead, they recommend focusing on enhanced infrastructure and 

defense efforts that improve the system’s ability to rebound from an attack and quickly 

return to satisfactory operating conditions. Engel (2011) also summarizes some of the 

flaws of the threat-vulnerability-consequences approach to risk in the context of system 

interdiction models. 

 Brown and Cox (2011) suggest game theory as a superior approach to PRA when 

evaluating risk in a system. Game theory considers the intelligent decisions of both the 

attacker and the defender, allowing each to freely choose when, where, and how he acts, 

but admitting that defender acts will be visible to the attacker. This more closely 

represents an actual defender preparing for possible threats, an attacker seeking to inflict 

maximum harm, and a defender (or operator) attempting to manage his system in a 

damaged, degraded condition. Viewing the interaction between friendly and enemy 
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combatants in this manner eliminates the requirement to subjectively identify 

consequences, vulnerabilities, and threats of a system and focuses attention on the CI/KR 

that, if attacked, would result in maximum frustration of the system. 

The 2010 NRC review of DHS approaches to risk analysis concludes: 

Conclusion: These network disruption and systems resilience models 
(which supplant and move away from current limitations of TVC analyses 
for CI/KR) are ideal for longer-term investment decisions and capabilities 
planning to enhance infrastructure systems’ resiliency, beyond just site-
based protection. Such models have been used in other private sector and 
military applications to assist decision-makers in improving continuity of 
operations. 

Recommendation: DHS should continue to enhance CI/KR data collection 
efforts and processes and should rapidly begin developing and using 
emerging state-of-the art network and systems disruption resiliency 
models to understand and characterize vulnerability and consequences of 
infrastructure disruptions. (NRC 2010, page 69) 

We follow this guidance to evaluate CI/KR resiliency on the Port of Pittsburgh. 

 There has been considerable interest in the use of game theory for security 

problems. Tambe et al. (2011) use game theory to consider security problems. They 

formulate a Stackelberg game for ports and inland waterway security in order to assist 

USCG efforts in combating terrorism. The Port Resilience Operational / Tactical 

Enforcement to Combat Terrorism (PROTECT) model is an example of the application 

of game theory techniques to defense efforts (Shieh et al., 2012). Additional applications 

of this technique include Assistant for Randomized Monitoring Over Routes (ARMOR) 

in the Los Angeles International Airport, Intelligent Randomization in Scheduling (IRIS) 

in the U.S. Federal Air Marshal Service, and Game Theoretic Unpredictable and 

Randomly Deployed Security (GUARDS) in the Transportation Security Agency 

(TEAMCORE 2011). 

B. SYSTEM INTERDICTION MODELS 

 Another use of game theory has been to consider system interdiction problems.   

Wood (1993) introduces a deterministic interdiction scenario. He details the usefulness of 

this technique in the context of “reducing the flow of drugs and related chemicals through 



 11

river and road networks in South America” (Wood 1993). His work considers two 

opponents, with a smuggler trying to maximize the amount of drugs transported through a 

network and an interdictor trying to minimize routes to achieve this objective. Wood uses 

a small 14-node, 25-arc sample problem to portray the interactions of the smuggler and 

interdictor on a capacitated network. He also considers the use of multiple commodities 

and other variations and extensions of this problem. Our problem is similar, with role 

reversals, where we are attempting to move coal across a network and the interdictor is an 

intelligent adversary, seeking to cut off our ability to traverse the system. 

 Brown et al. (2005, 2006) introduce Defender-Attacker-Defender (DAD) models 

to represent the interaction between an enemy (attacker) and an operator (defender). This 

three-move game begins with the defender analyzing his system and choosing a defense 

plan to minimize the effects of any potential attack. He may increase capacity, improve 

security, or reinforce vital system components. The next move belongs to the attacker, 

who evaluates the system, having full knowledge of the defender’s defense strategy and 

then attacks to inflict maximum damage. Finally, the operator attempts to manage the 

damaged system to minimize the impact of the attack. Wood (2011) provides a summary 

of network interdiction problems and the techniques for solving them. 

 Pidgeon (2008) develops a simulation model to estimate the costs associated with 

disruptions to the Marine Transportation System (MTS), specifically incidents at the 

major west coast ports of the U.S.. He explains the significance of western ports to the 

domestic economy, as these ports handle the majority of imported containerized cargo for 

the U.S.. He considers various scenarios, ranging from striking union workers to 

earthquakes in California that could cause delays in the handling of containerized cargo. 

Pidgeon considers the ability of government agencies to advise redirection of commercial 

vessels, assuming industry leaders would make wise, lowest-cost decisions in rerouting 

ships to alternate available ports. Pidgeon’s model uses queues to represent ships 

awaiting offload, and displays growing penalty costs related to infrastructure  

shortcomings. The model analyzes infrastructure capacity limitations and identifies choke 

points where government and/or commercial agencies may invest to mitigate penalty 

costs associated with delayed shipments.   
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 Bencomo (2009) analyzes the impact of various disruptions on the containerized 

transportation system into and out of North America. He develops an Attacker-Defender 

(AD) model, looking first at the optimal routes of shipment, then considers the effects of 

an intelligent adversary, workforce strikes, and natural disasters. This model seeks the 

most efficient means to transport goods from source to destination by taking advantage of 

various modes of transport. He considers road, rail, and water travel and develops a 

model to appropriately choose the best mode of travel at different stages of delivery. The 

model seeks the most cost-efficient means to satisfy supplies and demands. He suggests 

that future areas of study investigate more accurate representations of transport systems. 

Additionally, he advocates for more involvement from key stakeholders, to better 

understand the true ramifications of disruptions on the system. 

 De la Cruz (2011) evaluates the ability of the MTS to import various goods into 

Hawaii, via refrigerated and non-refrigerated containers. He observes that the large 

majority of consumer goods come from outside the island. Due to the limited storage 

capacity of the island, the system is fragile and cannot easily handle disruptions, making 

it susceptible to attack. Using Attacker-Defender modeling, he identifies system 

components (e.g., piers, cranes, and terminals) that are vital to maintaining the 

uninterrupted flow of containerized shipments. His work assesses how well the Hawaiian 

MTS handles worst-case disruptions and the effect of those disruptions in terms of 

delivery shortages. By identifying key components of the system and analyzing the 

system’s resiliency to attacks, de la Cruz affords government agencies and other 

commercial stakeholders insight into greatest areas of need for improved equipment, 

increased capacity, and better policies. 

 Babick (2009) challenges conventional risk management tools used by the 

Department of Homeland Security and compares current methods, such as RAMCAP, 

with AD and DAD algorithms. Babick demonstrates that DAD is superior to the risk-

based techniques, consistently providing answers that are as good, or better. Additionally, 

he shows that results from the DAD model provide insight into necessary improvements 

to infrastructure, an advantage over the risk management methods. Focusing on the 

western U.S. rail network, Babick explains that DAD and AD produce optimal routes 
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following an attack on the system. This exposes the susceptibility of certain arcs and 

nodes throughout the network and, as costs to redirect traffic rise, encourages further 

investigation of these critical pieces of infrastructure. This type of system transparency is 

not available in traditional PRA risk management methods. 

 Alderson et al. (2011) demonstrate the use of a Defender-Attacker-Defender 

(DAD) model in the context of a transportation system consisting of roads and bridges, 

and they provide a formal algorithm for solving the DAD tri-level optimization problem. 

 Engel (2011) compares risk-based assessment and game-theoretic techniques as 

viable USCG approaches to defending critical infrastructure against attack. The medium 

for this analytic comparison is the evaluation of the flow of coal along a particularly 

small portion of the Pittsburgh region. He develops an Attacker-Defender model, 

consisting of roads, railways, and rivers, to determine critical vulnerabilities to the 

shipment of a single commodity (coal) from mines to power plants and steel 

manufacturers.  Using notional data, his analysis provides proof-of-concept about the 

potential insights from a more rigorous study. 

C. CONTRIBUTIONS OF THIS THESIS 

 The primary contribution of this thesis is the development of an Operator’s Model 

that mimics the real-world behavior of coal transport in the Port of Pittsburgh and allows 

for systematic investigation of “what if” scenarios. 

 Building on the work done by Engel (2011), we expand the area of operation to 

include more mines and factories. We consider the movement of multiple types of coal, 

as contracted between individual suppliers and consumers. These changes add 

complexity, yet provide more realistic traffic flow, and a better understanding of the 

system in the Pittsburgh area.    

 We include multiple commodities, in the spirit of de la Cruz (2010), and multiple 

modes of transport as in Bencomo (2009). This produces a model that is closer to reality 

and provides further understanding of the interaction of these commodities on a 

complicated network.   
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III. RIVER TRANSPORT  

 The starting point of any analysis of critical infrastructure is to understand its 

basic function and operations, so as to be able to assess the consequences of disruption to 

that function. River transportation is a primary means of moving large quantities of bulk 

commodities. Although rail lines and roads are important shipment modes, rivers garner 

special attention in this thesis. Because coal accounts for 76% of river traffic by volume 

through the Port of Pittsburgh (PPC 2010), we provide a more detailed description of 

river shipment 

 The Monongahela and Allegheny Rivers converge to form the Ohio River at the 

Point of Pittsburgh. Figure 4 depicts our area of interest (AOI) around Pittsburgh, 

including the many locks and dams. These three rivers stretch more than 300 miles and 

provide both public recreation and enormous commercial shipping capacity. These rivers 

also flow through the most extensive coal bed in the Appalachian Basin (Puglio 1983). 

Exploitation of coal in this region began as early as 1751 (White 1898). Companies in the 

area are faithful consumers of coal and many rely solely on this local commodity for 

producing steel and generating electricity. 

 The characteristics of coal vary regionally, and coal is rated on its burn quality.  

“Coal is classified into four main types, or ranks (anthracite, bituminous, sub-bituminous, 

and lignite), depending on the amounts and types of carbon it contains and on the amount 

of heat energy it can produce” (U.S. Energy Information Administration, 2012). Each 

coal consumer must balance costs, including delivery fees, with quality when purchasing 

contracts. This further complicates matters on the river, as consumers are not simply 

buying from the nearest mine, but rather buying the type of coal they need from the mine 

company that offers the best price. This results in non-obvious delivery routes, including 

many instances of coal being delivered to and from locations outside our AOI. 
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Figure 4.   The Port of Pittsburgh consists of the Ohio, Monongahela, and Allegheny 
Rivers. This picture illustrates the location of various locks and dams (L/D) 
throughout our AOI, listed in the table to the right. Along the Ohio River 
our AOI is bounded by the Hannibal L/D. Along the Allegheny River our 
AOI is bounded by the Allegheny L/D 5. Along the Monongahela River our 
AOI is bounded by the Morgantown L/D.  Source: USACE 2012. 

 

 Locks and dams make river travel possible. Dams maintain the water level, so 

large vessels can transit without running aground. The body of water between two dams 

is known as a pool. Dams create a tiered effect between pools throughout the river 

network. Figure 5 illustrates the sequences of pools on the Monongahela River upstream 

of and including Pittsburgh. 

River Locks & Dams
Ohio River

Emsworth  L/D
Dashields  L/D

Montgomery  L/D
New Cumberland  L/D

Pike Island  L/D
Hannibal  L/D

Allegheny River
Allegheny L/D 2

C.W. Bill Young L/D 3
Allegheny L/D 4
Allegheny L/D 5

Monongahela River
Braddock  L/D

Monongahela  L/D 3
Monongahela  L/D 4

Maxwell  L/D
Grays Landing  L/D
Point Marion  L/D
Morgantown  L/D
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Figure 5.   Dams and pools on the Monongahela River. Source: USACE 2012. The failure of the Monongahela L/D 4 results in the 
loss of navigatbility of the river segment or pool between the Monongahela L/D 4 and the Maxwell L/D. Such a failure 
implies the inability to transport coal via river to or from any facilities (i.e., mines or plants) located within that pool. 
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Locks enable vessels to transition from one pool to the next (Figure 6). Passing 

through a lock, known as “locking-through,” can take 30 minutes to several hours, 

depending on queuing, number of barges, and the number of parallel locks available for 

use.   

 

 

Figure 6.   Aerial view of Emsworth Lock and Dam, Pittsburgh, PA. There are two 
parallel locks (at right) that allow passage between the pools of water 
separated by the dam (at left). Source: USACE 2012. 

 

 The USACE has responsibility for the continued operation of these waterways. In 

total, the USACE operates and maintains 12,000 miles of commercial inland navigation 

channels, including dredging riverbeds and repairing the 600 dams under its 

responsibility (USACE 2012). Because of aging infrastructure throughout the river 

system, scheduled maintenance on locks and dams creates delays of weeks to months. 

These planned repairs are announced to the public far in advance. The USCG also uses 

their website to notify the public of delays, blockages, and expected river conditions in 

nearly real-time. The average age of the 192 inland waterway locks is 50 years old (Gillis 

2009). In the event of catastrophic damage, the USACE relies heavily on established 

contractor support. Pursuant to the National Response Framework (DHS 2008), the 

USACE assists DHS with engineering support and construction supervision, handling 

significant debris removal and demolition when the situation is unmanageable at the local 

or state level. The Monongahela River has two of the oldest locks maintained by the 
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USACE, built in 1905 and 1907. In Calendar Year 2009 together they locked 10,602 

vessels carrying 26,044,941 tons of cargo (USACE 2012). Sudden loss of a dam would 

have cascading affects, damaging infrastructure downstream. 

Disruptions along the waterways range from mere inconveniences, such as minor 

maintenance, to long-term outages resulting from dam failure. This range of possibilities 

carries varying consequences, including increased costs to operate the system. These 

incremental cost increases are clearly undesirable. In September of 2009, Michael 

Hennessy, Vice President of river operations for CONSOL Energy, said, “A catastrophic 

breakdown of one of the Monongahela river’s aging locks, namely the 100-year-old Lock 

3, would bring hundreds of thousands of tons of barge traffic to an abrupt halt with little 

opportunity to quickly or efficiently divert the cargo to other land-based transport modes” 

(Gillis 2009).   

Natural disruptions along the river may result from flooding, freezing, 

infrastructure failure, or large debris (i.e., a sunken vessel). Some delays are scheduled, 

while others are unanticipated and result from seasonality or random happenings. 

Maintenance downtime can last from weeks to months, but auxiliary locks, and small 

temporary locks used to mitigate complete stoppage, alleviate some of the backlog of 

barges. The need for unscheduled maintenance increases as critical components fail from 

years of use.   

Another class of disruption includes deliberate attacks from a malicious agent. 

These types of attacks may include destroying critical infrastructure (e.g., locks, dams, or 

bridges) and are more challenging to prepare for. A May 2012 attempt to attack nearby 

infrastructure using “explosive materials to damage physical property affecting interstate 

commerce,” is a real-world example of such an attempt at disruption (Barrett 2012).   

Figure 7 shows that delays have increased over time as a result of scheduled and 

nonscheduled maintenance.   
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Figure 7.   Unscheduled lock outages. Source: Smith (Coal Power Magazine), 2007. 
  

The fragility of this shipping network and the limited resources of the USCG and 

USACE make the Port of Pittsburgh vulnerable to long-term disruption. Applying game 

theory system interdiction techniques to this problem will pinpoint CI/KR components 

whose loss has the biggest impact on system function. This proactive approach will 

identify vulnerabilities in the context of a malicious adversary and will aid decision 

makers as they prepare for worst-case scenarios and defend critical lines of commerce. 
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IV. THE OPERATOR’S MODEL  

 The transport of coal through Pittsburgh is driven by contracts between suppliers 

and consumers. These shipping contracts are satisfied through the movement of coal by 

barge, train, and truck from mines to customer destinations within our AOI. These 

contracts link the delivery of a specific commodity from a specific supplier to a specific 

consumer at a specific time.   

 We model a multi-commodity transshipment system in which each commodity 

(i.e., each individual contract) can travel along multiple modes of transport, each having 

different capacity and cost. We consider two types of coal (bituminous and lignite) and 

keep track of contracted shipments by destination (customer) and week of delivery. Thus, 

a “commodity” in this model is in fact a combination of (coal type, source, destination, 

and delivery week).  

We partition the set of nodes into two types.  “Terminal” nodes are the origins and 

destinations of flow, they can store commodity inventory, and they are not associated 

with any particular mode of transportation. A terminal is a place where coal is supplied, 

consumed, and/or stored or a place where coal is transferred on or off one of the three 

modes of transport. In contrast, each “transshipment” node is associated with a specific 

mode of transportation, and it cannot originate, terminate, or store commodities.   

Accordingly, there are two types of arcs.  “Transfer arcs” move commodity 

between terminal nodes and transshipment nodes.  “Transshipment arcs” move 

commodity between transshipment nodes. Commodities can move from one mode of 

transportation to another only by transiting through a terminal node. Additionally, modes 

of shipment have finite capacities with varying costs. Cranes, conveyors, excavators, and 

other innovative means accomplish loading and offloading. These arcs have both a 

capacity (i.e., equipment limitations) and cost (loading cost of $0.15 per ton and 

offloading cost of $0.30 per ton). The drawing in Figure 8 illustrates the relationship 

terminal nodes have with modal (i.e., river, rail, or road) transshipment nodes, enabled by 

intermodal transfer arcs. 
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Figure 8.   Transfer arcs between a terminal node and transshipment nodes for each of 
the three modes of transportation considered in this thesis. Capacities on 
transfer arcs may limit the ability to move coal to or from an individual 
mode of transportation. 

 

 We consider the movement of coal over a time horizon ranging from one to 

several weeks. The only interaction between time periods is through commodity 

inventory that is carried from one time period to the next at a terminal node.   

To understand how the system functions in the presence of disruptions, we must 

first understand how the system functions under normal operations. We begin with the 

assumption that all coal is transported via river during standard operating conditions. 

  

TERMINAL�
NODE�

RAIL�

RIVER�

ROAD�
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A. MODEL FORMULATION 

We present the formal mathematical model of system operations, in Naval 

Postgraduate School standard form (amended 27 July 2012). 

 

Index Sets [~cardinality]: 

n N      nodes [~100] 

r R  N     transshipment nodes (alias i, j) 

d D  N    terminal nodes (alias o,s) R D  ; R D  N  

m M    modes of transport; M={river, rail, road, transfer} 

\ ' transfer 'mx MX M    

{ , , }m i j A M N N          directed arcs (from node i to node j using mode m) [~500] 

{ , , } |{ , , } { , , }m i j U m i j A m j i A      undirected arcs [~250] 

w W     time periods (alias wd) [weeks, ~50] 

{ , } _w wd FORE LOG  time periods w during which shipments can be made for 

contracts due in time period wd ( w wd )[~50] 

{ , , , } _m i j w ARC I  if arc { , , }m i j  is damaged, it is still inoperable during time 

period  w [~500]  

c C     cargo type [~2] 

{ , , }c d wd COM   contract commodity [~1,000] 

 

Input Data [units]:  

, , ,o c d wdcontract  amount of cargo type c originating at node o contracted for 

delivery to node d during time period wd [tons] 

, ,m i jcost   cost per unit flow for using arc { , , }m i j A  [cost]  

, , ,o c d wdcpen  per-unit penalty for failing to deliver contract volume [cost/ton] 

shcost    holding cost for inventory at terminal s [cost/ton] 

_ sinv cap  inventory capacity at terminal s [tons] 
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,s cspen  per-unit demand shortfall penalty at node s of cargo type c 

[cost/ton] 

, ,m i jATTACK   binary indicator as to whether arc { , , }m i j A  is damaged;   

   = 1 if arc { , , }m i j is damaged, = 0 otherwise [binary] 

, ,m i jq    per unit flow penalty for using arc { , , }m i j A  if damaged [cost] 

, ,m i jcap   directed capacity of arc { , , }m i j A  [tons]  

, ,m i jucap  undirected (shared) capacity of arcs { , , }m i j A  and { , , }m j i A ,  

i < j [tons] 

Computed Data:  

, ,c d wddemand  demand for cargo type c at node d at during time period wd [tons] 

   , , , , ,c d wd o c d wd
o N

demand contract


   

Non-negative Decision Variables [units]: 

, , , ,o w c d wdF  flow from mine o during time period w of contract cargo {c,d,wd} 

[tons] 

, , , , . ,m i j w c d wdY  flow along arc { , , }m i j A  during time period w of contract cargo 

{c,d,wd} [tons] 

, , , ,s w c d wdIN  inventory at node s at start of time period w of contract cargo 

{c,d,wd} [tons] 

, , , ,s w c d wdA  transfer node s shortage at start of time period w of contract cargo 

{c,d,wd} [tons] 

, , , ,s w c d wdR  transfer node s excess at start of time period w of contract cargo 

{c,d,wd} [tons] 
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Formulation 1: Defender Model (D) 
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 The objective (S0) measures the total transit, transfer and inventory holding cost, 

plus any penalties for shortfalls or contract violations.  The “attack” terms will be 

discussed in a following section, but here merely represent arcs whose costs have risen so 

dramatically they will not be used.  Each constraint (S1) ensures for some contract that 

total flows from the source mine meet the contract amount.  Note that in case of 

anticipated disruptions, flows may leave the mine earlier than the delivery contract week 

to be stored in intermediate inventory somewhere and conveyed to the customer later.  

Each constraint (S2) accounts for balance of flow at some transfer node at the start of a 

planning period for some commodity.  Each constraint (S3) accounts for inter-modal 

transfers at some terminal node of come commodity, including inventory, shortfall, 

supply, and demand.  Constraints (S4) and (S5) enforce directed and undirected capacity 

on arcs, respectively.  Each constraint (S6) limits inventory held at some terminal at the 

start of some planning period. 

 This model finds the minimum cost means of delivering the contracted amount 

from each source to each destination, along one of several modes of transport, each 

having their own costs and capacities. An interdiction on an arc increases its usage cost, 

so if there is a disruption in one system (e.g., river), then the model looks for a low-cost 

alternative route (e.g., river, rail, or road). There is a penalty (cpencod) for violating 

delivery of contracted amounts (e.g., by satisfying a customer from an alternative 

supplier), but in general this penalty is less than the penalty for incurring a customer 

shortfall (spensc).  

The model has the flexibility to move and store coal in advance of its contract 

delivery date.  This is advantageous when planning for scheduled maintenance or when 

buffering inventories to reduce the impact of unplanned disruptions.  This functionality is 

controlled by the FORE_LOG mechanism in the formulation, which maintains an aspect 

of realism in delivery planning by limiting the model’s forecasting ability.  A reasonable 

use of this mechanism might be to allow the model to plan ahead and move coal up to 

four weeks in advance.  This prevents the model from transporting all coal in the first 
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week of operations, limited only by infrastructure capacity.  This unrestricted movement 

of coal is inconsistent with industry practice, which is more similar to a Just-In-Time 

system. 

This thesis only uses a single time period of one week, a restriction that could be 

used to considerably simplify the model exposition.  However, we have chosen to display 

the full model for a multi-time period planning horizon and show how shipments can 

preposition contracts and how demand can be satisfied before anticipated future losses of 

system components. 

B. BUILDING THE NETWORK 

In this section, we describe how we use information about the real system to 

develop data that we can use as input to the Operator Model formulation. The goal is to 

have our mathematical model mimic real-world behavior. 

Dams separate rivers into pools, enabling navigability. Locks allow movement 

from one pool to the next. Figure 9 illustrates this concept of segmenting rivers and 

provides a numbering system throughout the Port of Pittsburgh.  
 

 

Figure 9.   Dams segment the river into pools, which are numbered. Locks enable 
transit between pools. The Hannibal L/D and the Pike Island L/D on the 
Ohio River form Pool 10. 
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Our numbering scheme for locations is as follows. Starting at the downstream end 

of the AOI, we assign each river pool an increasing multiple of 10. We assign each river 

terminal associated with that pool a number equal to the pool plus a value 1–9 

representing its relative geographic location within the pool. The result is that the 

locations are naturally sorted (from downstream to upstream) according to their 

identification numbers (low to high). The simplified river network in Figure 10 illustrates 

the use of the pool identification numbering convention and the relationship terminals 

share in a pool. 

 

 

Figure 10.   Simplified river system showing a total of 44 terminals connected to 18 
pools. Terminal 16 is located in Pool 10. 

 
Terminals also connect to the rail and road network in a similar manner. Figure 11 

shows the rail and road networks, including illustrative bridges that cross rivers and 

connect land masses.   

 

Pittsburgh 

170�

160�

150�

140�

130�

120�

110�

60� 70�

80�

50�40�
30�

20�

10�

90�

100�

0�

171�

11�

12�

13�

17�

14�

15�

16�

22�

24�

21�

23�

32�

42�

31�

41�

43�

61�
62�

81�

91� 101�

114�

115�
111�

112�

113�

121�

123�

124�

122�

125�

131�

132�

141�

142�

143�

151�

152�

161�

162�

163� 164�

2�

Simplified river system 



 29

 

Figure 11.   Simplified river, rail, and road system, with bridges connecting landmasses 
by crossing over rivers. 

 

 This overall network has several different kinds of arcs that play specific roles in 

our analysis.   

 Transfer arcs from terminal nodes to and from transshipment nodes represent the 

ability to move commodity on or off a particular mode of transport. The capacities 

of these arcs are constrained by the physical equipment and/or processes available 

for loading and unloading coal. An interdiction on a transfer arc means that the 

terminal cannot send or receive coal from that transport mode. 

 Arcs connecting pools represent the ability to move commodity through the locks 

separating the pools. An interdiction on such an arc results in the inability to 

move commodity between pools. 
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 Arcs representing commodity movement within a pool. In order to represent an 

attack on a dam that could result in the loss of an entire river pool, we “split” each 

pool node into an “inbound” and “outbound” node and connect these with a single 

directed arc (see Ahuja, Magnanti and Orlin 1993, p. 41–42 for a discussion of 

this “node splitting” technique). An interdiction on this single arc results in the 

inability to move commodity within the pool.  

 Arcs representing movement on rail or road segments. Bridges, in particular, can 

form bottlenecks that constrain movement on land; interdictions on these arcs 

represent restrictions of such movement. 

Each of the arcs in our network has an associated cost and capacity, which are important 

factors in how the Operator’s Model chooses to route commodity flow. 

C. CAPACITY AND COST 

1. Capacity of Rivers  

For the purposes of our analysis, we assume a river has limitless capacity. Barges 

travel at a speed of roughly 4 miles per hour and are restricted to the geographical 

contours of the river. However, navigating a lock limits throughput. Barges can carry 

1,500 tons of cargo. A standard barge tow consists of 12 to 15 barges tied together 

(National Waterways Foundation 2008). A standard barge tow can take from two to eight 

hours to pass through a lock (Waterways Council 2011). Assuming 24 hours of operation 

per day and 7 days of operation per week, we have a capacity of (15 barges per barge 

tow x 1,500 tons per barge x 8 barge-tows per hour x 24 hours per day x 7 days per 

week =) 30.24 million tons per week.   

The costs of transporting commodities by river are less than other modes of travel. 

The Port of Pittsburgh Commission states the average cost per ton-mile by barge is 

between $0.005 and $0.01 (PPC 2012b). For the purpose of this analysis, we will use a 

cost per ton-mile of $0.008. 
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2.  Capacity of Rail (Including a Discussion on Bridges)   

A jumbo hopper rail car can carry approximately 100 tons of cargo. Coal train 

length, measured by the number of railcars coupled together, is limited by the number of 

engines employed, steepness of track grades, Department of Transportation (DOT) 

regulations (DOT 2012), and other mechanically limiting factors such as air-brake 

restrictions. A typical coal train can safely pull 150 fully loaded coal hoppers. Each coal 

train then carries (100 tons of cargo per hopper x 150 fully loaded hoppers per train =) 

15,000 tons. 

Like locks on a river, bridges can create bottlenecks for rail traffic, as only a finite 

number of trains can traverse the bridge during a given time epoch. A 2006 survey 

established there are 446 bridges within the Pittsburgh city limits, the most of any city in 

the world, surpassing Venice, Italy (Regan 2006). A train of 150 cars is (46 feet long per 

hopper car x 150 hopper cars =) 7,000 feet long (Environmodal 2012). At a safe speed of 

15 miles per hour (Norfolk Southern Railroad Company 2012), including stops, (15 mph / 

7,000ft =) 11.3 trains per hour could pass a given point. This speed includes loading, 

offloading, stops, and operational time. Operating 24 hours per day and 7 days per week 

results in a maximum capacity of (11.3 trains per hour x 24 hours per day x 7 days per 

week =) 1,898 trains, with a total cargo capacity of (1,898 trains x 15,000 tons per train 

=) 28.5 million tons per week. 

Additional capacity limitations include the number of rail lines and the 

availability of rail cars and engines. Trains are constrained to tracks. While this might 

seem restrictive, it does provide more route diversity than barges constrained to rivers. 

The average cost to move coal by rail car is $0.05 per ton-mile (PPC 2012b). 

3. Capacity of Roads (Including Bridges)  

A conservative estimate of the maximum capacity of a coal-carrying truck is 

25 tons (The Energy Library 2009). Trucks provide the most flexibility of any mode of 

transportation. Trucks are typically employed only for short movements as the costs to 

move such small volume quickly erase potential profits.   
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Again, bridges create bottlenecks and limit total throughput. There are a total of 

75 road bridges within our AOI that cross the Ohio, Monongahela, and Allegheny rivers. 

The average weekly traffic over some of Pittsburgh’s busiest bridges in 2009 was around 

20,000 vehicles per day (less than 10% or 2,000 were trucks) (City-Data 2012). 

Assuming anything greater than a 50% increase in traffic would halt movement, we take 

30,000 (20,000 + .50 x 20,000) as the maximum capacity of any bridge during a day. 

This represents a 500% increase in truck traffic, which would be significant, but 

necessary for emergency rerouting. The 10,000 trucks equates to (10,000 vehicles per day 

x 7 days per week x 25 tons per truck =) 1.75 million tons of coal per week by road. 

Transporting coal by trucks on roads is the most expensive option at $0.10 per 

ton-mile (PPC 2012b). 

4.  Capacity of Terminals 

Terminals are locations with the capacity to load and/or offload cargo or to 

transfer commodities from one mode of shipment to another. Each terminal is unique and 

may possess different kinds of heavy lifting equipment (e.g., conveyors, electric whirler 

cranes, hoists, or clamshell buckets). The availability of commodity-transferring assets 

presents capacity limitations at each terminal.   Transfer capacity may vary by mode of 

transport. 

Additionally, some terminals are not accessible by every mode of transportation. 

For instance, some terminals do not have rail lines or have limited road access.  

The speed of commodity transfers also presents capacity limitations. Offloading 

and loading does not happen instantaneously. Large shipments of coal, up to 15 barges 

each carrying 1,500 tons of coal, take time and manpower to move. Each piece of 

commodity-moving equipment operates at a different speed and some terminals are not 

outfitted with the newest technology or the fastest equipment.  

For the purposes of our analysis, we assume the average cost for loading coal onto 

barges, rail cars, or trucks is $0.15 per ton. Because offloading is more labor intensive 

and costs are higher, we assume the cost of this is $0.30 per ton. 
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D.  INVENTORY 

In our Operator’s Model, any terminal node can carry inventory to facilitate low-

cost transport of coal. In practice, however, power plants typically carry a certain amount 

of inventory, on average 45 days, in order to compensate for interruptions in supply such 

as miner’s strikes and/or holidays, adverse weather or transportation problems (Phillips 

2008). Methods of storage are closed silos and open storage. 

E.  REPAIR TIMES 

When a piece of infrastructure is damaged, whether by deliberate or non-

deliberate means, it is not necessarily lost forever. Repairs to river, rail, or road 

infrastructure take time, but are often joint efforts by government and non-government 

agencies. For the purposes of our analysis, repair times for critical infrastructure are 

measured in weeks. We simplistically assume that transfer equipment (i.e., conveyors or 

cranes) take two weeks to repair. Locks are uniquely constructed and repairs are labor-

intensive tasks that we assume take four weeks each. Dams are the most time-consuming 

repairs, assumed here to take 13 weeks each. Roads and rail lines are typically repaired 

within one week; therefore we consider their repair times to be negligible, as these repairs 

can be accomplished within a single model time period. 

F. TRAFFIC DEMAND BY ORIGIN-DESTINATION 

The U.S. Army Corps of Engineers (USACE) maintains lock throughput data for 

the entire inland waterways. Our study considers 2009 data for the Port of Pittsburgh. 

This data contains the following noteworthy fields of information: 

 Commodity Name, 
 Origin Name, 
 Destination Name, 
 Delivery Date, and 
 Tons. 

Working with the USCG, USACE provided a comma-separated-value (csv) file 

with over 20,000 lines of data representing individual movements of coal. Given this 

extremely valuable source of information, we face two challenges. First, we need to 

understand whether these historical coal flows have structure that could perhaps provide 
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insight into the most critical parts of the river. Second, we need to get the data in a form 

that can be used by our mathematical AD model, which we implemented in the 

Generalized Algebraic Modeling System (GAMS) (GAMS 2012). To address these 

challenges, we use Visual Basic for Applications (VBA) in Microsoft Excel (Microsoft 

Corporation 2012) to manipulate, sort, filter, and aggregate the data. This section 

describes this data development and its insights. 

1. Data Preprocessing 

Our raw data includes numerous commodities, such as grain, gravel, and 

petroleum-based products, but the data also includes lignite coal and bituminous (a.k.a. 

coke) coal. Coal is of sole importance to this study. Because we focus exclusively on coal 

movement, we filter out non-coal goods, leaving around 15,000 lines of data.  

Next, we transform the data into a form that follows a standard naming 

convention and adheres to the requirements for use in GAMS (e.g., use of underscore 

characters instead of spaces). We reduce commodity names to simply COAL_A or 

COAL_B. We assign each origin and destination location a unique identification number 

as a programing simplification and in order not to reveal sensitive data that exposes 

specific customer relationships. Additionally, we associate each location with a specific 

river pool so we can easily observe relationships along the waterways. Finally, we 

associate each delivery date with a week of year (1 through 52). The result is a new 

augmented table with the following fields: 

 New Commodity Name, 
 New Origin Name, 
 Origin ID, 
 Origin Pool, 
 New Destination Name, 
 Destination ID, 
 Destination Pool, and 
 Week Number. 

  

Table 1 shows a partial list (Monongahela River terminals only) of our terminal 

names with their identification numbers.   Because our river network connects to a much 

larger network of rivers via the Ohio River, we adopt the convention of a notional node 
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outside of our region. This single ‘super’ terminal, known as the OHIO_1, represents an 

aggregate of all source and destination terminals outside of our AOI.   

 

TERMINAL NODE NODE ID # 
OHIO_1 1 
MON_1 111 
MON_2 112 
MON_3 113 
MON_4 114 
MON_5 115 
MON_6 121 
MON_7 122 
MON_8 123 
MON_9 124 
MON_10 125 
MON_11 131 
MON_12 132 
MON_13 141 
MON_14 142 
MON_15 143 
MON_16 151 
MON_17 152 
MON_18 161 
MON_19 162 
MON_20 163 
MON_21 164 
MON_22 171 

Table 1.   Terminal nodes with node identification numbers. Our Ohio Super terminal 
is OHIO_1 and its node identification number is 1. The last terminal on the 
Monongahela is MON_22 and its node identification number is 171. 

 

Additional nodes enable the model to properly replicate real-world functionality, 

such as an offloading point along a river. These include river nodes, rail nodes, and road 

nodes. There are many of these nodes in our model; several examples of these nodes are 

listed in Table 2. 
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Table 2.   River, rail, and road nodes facilitate intermodal transfers. The 
ROAD_OHIO_1 node is the road node associated with the OHIO_1 
terminal and its node identification number is 342. 

 
Arcs connecting these nodes are limited by capacities related to their mode of transport 

(i.e., river, rail, or road) and loading and offloading equipment (cranes, conveyors) at 

terminals 

2. Data Aggregation 

 Observing coal throughput is a first step in understanding key infrastructure. 

Trying to understand thousands of pieces of data independently is a daunting task, so we 

build an origin-destination matrix to group similar data and expose delivery patterns. The 

matrix in Figure 12 illustrates this aggregation of coal data. The row and column headers 

are our terminal nodes, listed by their identification numbers. Lines in the matrix 

represent locks and dams. Flows are grey-scale coded to highlight supply and demand 

fluctuations, with light grey representing low, dark grey representing medium and black 

representing high tonnage. 

Intermodal Nodes Node ID #
ROAD_OHIO_1 342
ROAD_MON_1 343
ROAD_MON_2 344
…
RAIL_OHIO_1 242
RAIL_MON_1 243
RAIL_MON_2 244
…
RIVER_OHIO_1 139
RIVER_MON_1 140
RIVER_MON_2 141
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Figure 12.   Origin-Destination Matrix for coal transport. The sparsity of this matrix indicates that in practice there are only a 
relatively small number of contracted supplier-customer relationships. 
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From this matrix we develop Table 3 that shows a ranking of the most significant 

shippers and receivers of coal for an entire year. Clearly, coal moving to and from 

OHIO_1 is significant. But, flow along the Monongahela is also very substantial. 

 

 

Table 3.   Top receiving and shipping terminals in the entire Port of Pittsburgh. The 
OHIO_1 terminal is essentially an exit portal from our AOI. Note the large 
amounts of coal entering and leaving the system at this terminal.  

 

  Figure 13 illustrates how seasonal climate changes affect coal demand in the 

Pittsburgh region. Cold winter months (December, January, February, and March) and 

hot summer months (July and August) increase heating and cooling needs. The lowest 

consumption occurs in October (~7.6 million tons), compared to the highest consumption 

in February (~12.6 million tons). February has shorter days, approximately 10.5 hours of 

sunlight, meaning more electricity is used for lighting, compared to 12 hours of sunlight 

in October. Colder February temperatures, on average 35 degrees Fahrenheit, result in 

increased heating costs compared to mild October temperatures of 55 degrees Fahrenheit 

(The Weather Channel 2012). These seasonal factors influence a nearly 66% increase in 

RANK TONS RECEIVED % OF TOTAL RANK TONS SHIPPED % OF TOTAL

1 4,788,373 OHIO_1 25.27% 1 6,627,767 MON_15 34.97%

2 4,081,834 MON_14 21.54% 2 4,356,684 OHIO_1 22.99%

3 2,694,070 MON_4 14.22% 3 3,458,572 MON_13 18.25%

4 1,980,786 MON_19 10.45% 4 1,704,103 OHIO_17 8.99%

5 1,079,146 ALLY_1 5.69% 5 1,429,133 MON_20 7.54%

6 749,909 MON_1 3.96% 6 358,129 OHIO_11 1.89%

7 744,456 MON_11 3.93% 7 184,139 MON_12 0.97%

8 473,327 MON_2 2.50% 8 181,888 MON_21 0.96%

9 469,791 OHIO_14 2.48% 9 153,200 MON_17 0.81%

10 429,211 OHIO_19 2.26% 10 142,763 MON_18 0.75%

11 376,478 MON_9 1.99% 11 114,821 MON_10 0.61%

12 356,279 MON_12 1.88% 12 101,198 MON_6 0.53%

13 236,322 OHIO_16 1.25% 13 61,871 OHIO_18 0.33%

14 216,920 OHIO_5 1.14% 14 35,529 ALLY_3 0.19%

15 95,186 OHIO_15 0.50% 15 19,585 MON_5 0.10%

16 49,062 MON_7 0.26% 16 11,755 MON_8 0.06%

17 42,805 MON_23 0.23% 17 8,083 MON_23 0.04%

18 39,914 OHIO_8 0.21% 18 1,570 MON_3 0.01%

19 34,015 MON_6 0.18%

20 10,038 OHIO_3 0.05%

21 1,768 ALLY_3 0.01%

22 1,100 OHIO_17 0.01%
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coal consumption. In order to observe model behavior under a more stressful coal 

delivery scenario, we consider normal operation during one of these peak periods, 

specifically week 1. 

 

 

Figure 13.   Coal flows through the Pittsburgh AOI by four-week “month.” Seasonal 
fluctuations are mostly consistent across pools, with the first eight weeks of 
the calendar year showing the largest overall flows. 

 
As one would expect, locks and dams conveying large volumes of coal are more 

significant to the system than those locks and dams supporting little or no coal 

movement. Because dams maintain navigability along the river, it is vital that we 

understand which dams support the most coal traffic. Figure 14 shows coal throughput, 

measured in tons, for each pool in the Port of Pittsburgh. It is clear that pools 40, 50, 60, 

and 110 constitute a top-tier. The next significant group consists of pools 0, 10, 20, 30, 

120, 130, 140 and possibly 150 and 160. Finally, it seems that pools 70, 80, 90, 100, and 

170 are less critical to the movement of the majority of coal through our AOI. This 

cursory analysis helps to develop our intuition regarding coal traffic and provides a 

baseline understanding of standard coal operations in the Pittsburgh region. 
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Figure 14.   Coal flow through each pool in the Pittsburgh area. Pools 0 through 60 
constitute the Ohio River. Pools 70 through 100 constitute the Allegheny 
River. Pools 110 through 170 constitute the Monongahela River. 

 

The bar chart in Figure 14 illustrates the disproportionately small volume of coal 

flowing through the Allegheny River (Pools 70, 80, 90, and 100). This chart also shows 

the large amount of coal flowing into, out of, and remaining on the Monongahela River 

(Pools 110 through 170). For these reasons, we focus our attention on the Monongahela 

River. 

G. BUILDING INPUT FILES FOR GAMS 

 Constructing usable input files for GAMS requires the thoughtful collection and 

aggregation of various data fields. Figure 15 displays a portion of the arc_data.csv file, 

which lists all arcs by mode, source, and destination. The data file also includes directed 

and undirected capacities (cap  and ucap), cost per ton-mile to traverse the arc (cost), a 

penalty value for attempting to traverse the arc if the arc is attacked (q), and a repair time 

(recon_time) for each arc. This file is an example of the types of files necessary for 

system interdiction modeling with GAMS. Such files consist of thousands of lines of 
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information, which are impractical to manually generate. The use of explicit rules and 

programming logic applied via VBA coding enables quick, accurate computation and 

provides flexibility for later changes. 

 

 

Figure 15.   The arc_data.csv file showcases various fields necessary for system 
interdiction modeling. Generating such files manually is impractical. The 
RAIL arc originating from RAIL_MON_3 and destined for 
RAIL_MON_BRIDGE_1 has a directed capacity (cap) and undirected 
capacity (ucap) of 28,500,000, a transportation cost of $1.35 per ton-mile, 
an interdiction penalty (q) of 10,000 and a repair time (recon_time) of 1 
week. 

 

Time developing data is time well spent, even if the upfront cost to evaluate raw 

data may seem high. Our raw data contains over 20,000 lines of information with over 25 

unique fields. However, the reward for properly assessing the data and digesting the story 

the numbers tell is worth the investment. This initial analysis enables quick 

understanding of coal movement through the AOI, gives us some cursory intuition 

regarding the more significant and less significant infrastructure components, and 

provides useful input for GAMS to quickly solve large, complex problems.   

H. ASSESSING BASELINE OPERATIONS: THE MONONGAHELA RIVER 

In the remainder of this thesis, we focus on the flow of coal on the Monongahela 

River. Although only a subset of our entire AOI, it is a region with perhaps the highest 

density of river terminals. Figure 16(Left) identifies this narrowed AOI. 
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Figure 16.   Left: The Monongahela River highlighted in blue within the oval. Right: 
Network representation of the Monongahela River. 

 
To further make the case for the significance of focusing on the Monongahela 

River, the largest coking plant in the U.S., the U.S. Steel Clairton Plant, and the largest 

underground coal mine in the U.S. both reside on this river (Waterways Council 2010). 

Additionally, the river has 24 terminals, eight pools, seven locks and dams, eight rail 

bridges, and 26 road bridges. Although reduced in size, this system has significant 

“internal” coal flow (i.e., shipments originating from a terminal on the Monongahela 

River and destined for delivery to another terminal on the Monongahela River), as well as 

significant inbound and outbound coal shipments (i.e., coming to or from terminals on the 

Ohio River). Figure 16(Right) illustrates our narrowed focus of the Monongahela River 

network. 

Having developed the necessary input data for the Operator’s Model, we begin 

with an analysis of uninterrupted operations. Considering only one week of operations, 

our model estimates 1,244,879 tons of coal is delivered at a cost of $255,450. All coal is 

transported along the river and transfer costs account for approximately one-third of total 

cost. This requires a minimum of 711 fully loaded barges.  
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These operating costs serve as a baseline for all subsequent analysis. With no 

interdictions the Operator’s Model finds the least costly method of transporting all 

shipments of coal from source to destination. In this case, the mode of RIVER is chosen 

for its low cost per ton-mile rate. This is consistent with the real system, in which all 

commodities move by barge. 

In reality, contracts between suppliers (e.g., mines) and consumers (e.g., 

electricity plants) drive flows from sources to destinations. Table 4 displays contract data 

for the first week of operation on the Monongahela River. Keep in mind that Ohio super 

terminal OHIO_1 represents source and destination activity outside of our narrowed AOI, 

which only includes the Monongahela River. 

 

 

Table 4.   Week 1 contracts between mines and plants. The contract between 
MON_15 and OHIO_1 is for cargo type COAL_A, in week 1, for 59,788 
tons. 

 
To explain in more detail the commodity flows in our model, we will focus on the 

59,788 tons of COAL_A transported from MON_15 (Node ID #143) to OHIO_1 (Node 

ID #1). The cartoon depiction in Figure 17 demonstrates movement of coal from the 

MON_15 source node to the OHIO_1 destination node. The coal passes through several 

SOURCE DESTINATION CARGO TYPE WEEK AMOUNT

OHIO_1 OHIO_1 COAL_A 1 6957

OHIO_1 MON_6 COAL_A 1 3097

OHIO_1 MON_4 COAL_A 1 22165

OHIO_1 MON_11 COAL_A 1 2236

OHIO_1 MON_14 COAL_A 1 9775

OHIO_1 MON_19 COAL_A 1 9802

MON_5 OHIO_1 COAL_A 1 1431

MON_8 MON_9 COAL_A 1 988

MON_12 MON_9 COAL_A 1 1171

MON_13 OHIO_1 COAL_A 1 14780

MON_13 MON_14 COAL_A 1 2131

MON_13 MON_19 COAL_A 1 2088

MON_15 OHIO_1 COAL_A 1 59788

MON_15 MON_14 COAL_A 1 15059

MON_20 MON_9 COAL_A 1 2952

MON_20 MON_14 COAL_A 1 5003

MON_20 MON_19 COAL_A 1 7609

CONTRACTS
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locks and dams; as the total tonnage is far less than the maximum capacity for a lock 

during a one-week period. Also, note the transfers from MON_15 onto the river and 

ultimately off the river to OHIO_1. The total cost for the delivery of this coal is $27,383, 

which is a function of distance, mode of travel rate (recall, river = $0.008 per ton mile, 

rail = $0.05 per ton mile, road = $0.10 per ton mile), total tonnage, plus loading and 

offloading costs (loading = $0.15 per ton and offloading = $0.30 per ton). 

 

 

Figure 17.   The flow of coal satisfying the contract from the MON_15 mine at terminal 
node #143 to the OHIO_1 plant at terminal node #1. 
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V. ATTACK AND DEFENSE OF RIVER OPERATIONS 

Attacks to river infrastructure in the Port of Pittsburgh pose considerable threat. In 

a single week, the Monongahela River moves more than one million tons of coal at a cost 

of more than $250,000. In this chapter, we identify interdictions that result in worst-case 

disruptions, where “worst-case” means the highest total cost even after the system has 

rebalanced flows. 

We use our Operator’s Model as a starting point. In the event of an attack, the 

Operator’s Model will reroute cargo, finding the cheapest means to satisfy demand in a 

disrupted environment. Undisrupted, the system loads cargo on the river, the cargo 

travels to its destination, and the cargo is offloaded. A disruption to the river unavoidably 

increases traffic on other modes of transport. Because river transport is the cheapest mode 

of travel, moving cargo by rail or road certainly increases cost. This increase in traffic 

may also challenge shipment capacities (e.g., insufficient number of available trucks or 

rail cars) or exceed transfer equipment capacities (e.g., slow conveyors or small cranes); 

further increasing costs if demand is frustrated.   

 In our analysis, we first consider the effects of a single attack: analyzing the 

attacker’s most impactful single-attack locations and ranking them accordingly. Then we 

consider multiple simultaneous attacks, where the attacker chooses the most impactful 

locations to for two, three, four, and five simultaneous attacks. We compare these 

outcomes in an operator’s “resiliency curve.”  Finally, we consider attacks under varying 

conditions: first, perfectly protected dams and, then, perfectly protected locks and dams. 

These two alternative scenarios provide insight on where and/or how best to employ 

limited resources to improve system resiliency to disruption. 
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A. ATTACKER’S MODEL 

 The Attacker’s Model follows directly from the Operator’s Model formulation, by 

replacing the input data ATTACK mij with a decision variable Xmij. 

 

 

Additional Data 

num_attacks  Number of allowable attacks 

 

Additional Variables 

Xmij   Disrupt Flow on arc (m,i,j), 

   binary indicator as to whether arc ( , , )m i j A  is damaged;   

   = 1 if arc (m,i,j) is damaged,  

   = 0 otherwise 

 

Formulation 2: Attacker-Defender Model (AD) 
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The objective function (A0) replaces (S0) and now takes a bi-level max-min form, 

with decision variables Xmij replacing data ATTACK mij . Operating constraints (S1)-(S5) 

apply as before. Constraints (A6) make sure that any attack on a directed arc also affects 

its symmetric arc. Constraints (A7) enforce the attacker’s “budget.”  Constraints (A8) 

enforce the binary nature of attacks. 

We implement the Attacker’s Model using the General Algebraic Modeling 

System (GAMS 2012), and solve it with Bender’s Decomposition (see Wood. 2011. for 

details on the use of this technique to solve bi-level network interdiction problems) using 

the CPLEX Optimization Solver (ILOG 2012). 
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B. WORST-CASE SINGLE ATTACK 

We immediately see a 248 percent increase in operating costs, at $559,204. Coal 

is now primarily delivered via rail and transfer costs have increased nearly 40 percent, to 

$100,513.   

The worst single attack is on Pool 60, essentially cutting off all river traffic into 

and out of the Monongahela River. This causes the operator to move the majority of coal 

by rail to its destination. This disruption causes a decrease in river transport, as a large 

amount of cargo is shipped from the Monongahela River to destinations outside of the 

Monongahela River and a large amount of cargo is shipped from origins outside of the 

Monongahela River to destinations on it. 

 The top 15 worst-case single attacks are listed in Figure 18. Baseline operations 

are highlighted in green and the most impactful attacks are listed in descending order. 

The first four worst attacks are attacks on dams. These attacks make river transport 

through the associated pool impossible, as the loss of a dam means the loss of pool draft 

and therefore pool navigability. The next most impactful attack occurs at a lock, which 

makes transfer between the two associated pools impossible.   
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Figure 18.   Baseline operating costs (green) and the cost of the best 15 single attacks to the Monongahela River. Dams are attacked 
first, restricting navigation through pools. Locks are then attacked, restricting the ability to transit between pools.
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C. MULTIPLE SIMULTANEOUS ATTACKS 

Simultaneous disruptions may occur at multiple, separate locations. These 

simultaneous attacks will necessarily increase costs above the cost of a single worst-case 

disruption. The worst-case scenario for two simultaneous attacks occurs at Pool 60 and 

Pool 130. This attack causes total operating costs to rise to $598,421. The majority of 

coal is then shipped via rail, while some is still moved via river. Interestingly, transfer 

costs decrease from the single attack scenario, as the operator chooses to ship directly 

from source to destination via rail, rather than transferring coal to the river, partly using 

the river, then transferring to rail for the remainder of the trip. With two simultaneous 

attacks, the operator avoids multiple loading and offloading transfers. Table 5 displays 

these statistics. We maintain this standard of conveying operating results throughout the 

remainder of this analysis. As attacks increase, barge use decreases, and rail car and truck 

use increase. Table 5 deconstructs the costs associated with each mode of transport, 

beginning with zero attacks and ending with five simultaneous attacks. Looking at the 

MODAL COST, it becomes apparent that transportation costs rise drastically following 

the initial attack(s). 
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Table 5.   Most impactful simultaneous attacks: 0 through 5. For 2 simultaneous 
attacks, 213,250 tons of coal is transported via river and 153,742 tons of 
coal is transported via rail. The cost to operate the system becomes 
$598,421. 

 

The worst-case scenario for three simultaneous attacks occurs at Pool 60, Pool 

130, and Pool 150. These attacks cause total operating costs to rise to $602,145. The 

majority of coal is shipped via rail, while some is still moved via river and transfer costs 

continue to decrease.   

The worst-case scenario for four simultaneous attacks occurs at Pool 60, Pool 

110, Pool 130, and Pool 150. These attacks cause total operating costs to rise to 

$602,824. The majority of coal is shipped via rail, while some is still moved via river and 

transfer costs continue to decrease. Finally, some coal is moved via road.   

# ATTACKS MODE TONS TON‐MILES MODAL COST TOTAL COST

river 1,244,879 711 barges  19,176,963 $153,416

rail 0

road 0

transfer 320,150 320,150 $72,034

river 938,331 536 barges  4,438,750 $35,510

rail 123,074 1230 rail cars  8,463,616 $423,181

road 0

transfer 446,722 446,722 $100,513

river 213,250 121 barges  894,238 $7,154

rail 153,742 1537 rail cars  10,208,468 $510,423

road 0

transfer 359,304 359,304 $80,843

river 8,819 5 barges  53,975 $432

rail 166,354 1663 rail cars  10,593,602 $529,680

road 0

transfer 320,150 320,150 $72,034

river 0

rail 169,867 1698 rail cars  10,603,398 $530,170

road 2,964 118 trucks  6,206 $621

transfer 320,150 320,150 $72,034

river 0

rail 169,867 1698 rail cars  10,603,398 $530,170

road 2,964 118 trucks  6,206 $621

transfer 320,150 320,150 $72,034

4

5

$225,449

$559,203

$598,421

$602,146

$602,824

$602,824

0

1

2

3
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The worst-case scenario for five simultaneous attacks occurs at Pool 60, Pool 110, 

Pool 120, Pool 130, and Pool 150. These attacks cause total operating costs to plateau at 

$602,824.  

The Operator’s Resiliency Curve in Figure 19 illustrates the increased costs 

associated with attacks 0 through 5. This increased cost to operate the system represents 

the attacker’s “return on investment.”  Each attack increases costs; however, after only 

two attacks, the incremental costs become very small. 

 

 

Figure 19.   Operator’s Resiliency Curve. For an increasing number of attacks on this 
system, there is a diminishing return to the amount of incremental cost that 
can be forced upon the operator. 

 

Our analysis shows the results of single attacks and multiple attacks significantly 

increase operating costs. Additionally, we note attacks most often occur on dams, to 

eliminate the use of pools, or on locks, to restrict movement between pools. These attacks 

focus on frustrating the flow of coal into and out of our narrowed AOI on the 

Monongahela River. We also notice attacks toward the middle of the Monongahela River, 

disrupting the large amounts of internal coal flows. 

 Table 6 breaks out the best attack locations, total cost, and cost increases from 

baseline operations for attacks ranging from zero to five simultaneous attacks. The 
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financial impact of a 2-attack scenario rises to 265 percent increase from baseline 

operations. However, all subsequent combinations of attacks (3-attacks, 4-attacks, and 5-

attacks) result in less than 2 percent increase in costs.   

  

Table 6.   Impact of multiple simultaneous attacks. With 5 simultaneous attacks, Pools 
60, 110, 130, and 150 are attacked, as well as the lock from Pool 120 to 
110. This results in an operating cost of $602,824, which is an increase 
from the baseline of 267.39%. 

1 week

# ATTACKS RANK BEST LOCATION OF ATTACK COST
COST INCREASE 

FROM BASELINE

% COST INCREASE 

FROM BASELINE

0 0 BASELINE $225,449

1 DAM     POOL_60_IN   POOL_60_OUT $559,203 $333,754 248.04%

2 DAM     POOL_110_IN   POOL_110_OUT $388,037 $162,588 172.12%

3 DAM     POOL_130_IN   POOL_130_OUT $373,038 $147,589 165.46%

4 DAM     POOL_120_IN   POOL_120_OUT $372,403 $146,954 165.18%

5 LOCK     POOL_130_OUT   POOL_120_IN $319,173 $93,724 141.57%

6 LOCK     POOL_110_OUT   POOL_60_IN $310,903 $85,454 137.90%

7 LOCK     POOL_120_OUT   POOL_110_IN $310,451 $85,002 137.70%

8 DAM      POOL_140_IN    POOL_140_OUT $261,268 $35,819 115.89%

9 LOCK     POOL_130_OUT   POOL_140_IN $255,921 $30,472 113.52%

10 LOCK     POOL_120_OUT   POOL_130_IN $250,601 $25,152 111.16%

11 LOCK     POOL_110_OUT   POOL_120_IN $249,123 $23,674 110.50%

12 DAM      POOL_150_IN   POOL_150_OUT $237,558 $12,109 105.37%

13 LOCK     POOL_140_OUT   POOL_150_IN $233,065 $7,616 103.38%

14 LOCK     POOL_150_OUT   POOL_140_IN $229,659 $4,210 101.87%

15 LOCK     POOL_140_OUT   POOL_130_IN $228,686 $3,237 101.44%

DAM      POOL_60_IN    POOL_60_OUT

DAM      POOL_130_IN   POOL_130_OUT

DAM      POOL_60_IN    POOL_60_OUT

DAM      POOL_120_IN    POOL_12_OUT

DAM      POOL_60_IN    POOL_60_OUT

LOCK     POOL_130_OUT    POOL_120_IN

DAM     POOL_60_IN    POOL_60_OUT

DAM     POOL_110_IN   POOL_110_OUT

DAM     POOL_60_IN    POOL_60_OUT

LOCK    POOL_120_OUT   POOL_110_IN

DAM     POOL_60_IN    POOL_60_OUT

DAM     POOL_130_IN   POOL_130_OUT

DAM     POOL_150_IN   POOL_150_OUT

DAM     POOL_60_IN    POOL_60_OUT

DAM     POOL_110_IN   POOL_110_OUT

DAM     POOL_130_IN   POOL_130_OUT

DAM     POOL_150_IN    POOL_150_OUT

DAM     POOL_60_IN    POOL_60_OUT

DAM     POOL_110_IN   POOL_110_OUT

LOCK    POOL_120_OUT   POOL_110_IN

DAM     POOL_130_IN   POOL_130_OUT

DAM     POOL_150_IN    POOL_150_OUT

4 1 $602,824 $377,375 267.39%

5 1 $602,824 $377,375 267.39%

5 $578,731 $353,282 256.70%

3 1 $602,145 $376,696 267.09%

3 $583,628 $358,179 258.87%

4 $580,226 $354,777 257.36%

1

2

1 $598,421 $372,972 265.44%

2 $584,922 $359,473 259.45%
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 Interestingly, the system seems to be fairly resilient following just two attacks. 

This results from a robust rail network and modeling assumptions that make the rail 

network nearly invulnerable. It takes five attacks to force coal onto the most expensive 

form of transportation: trucks on roads. Again, the transfer costs have receded to pre-

attack costs, as the model no longer finds it advantageous or possible to conduct more 

than one loading and one offloading action per shipment.   

D. ALTERNATIVE SCENARIOS 

To this point our study has considered single and multiple attacks on our network. 

Now, we will consider alternative scenarios involving (1) perfect protection of the dams 

along the river and (2) perfect protection of both locks and dams along the river. This 

perfect protection equates to the invulnerability of those assets (i.e., dams and locks).  

 The Operator’s Resiliency Curve (denoted by green triangles) in Figure 20 

illustrates the decreased impact of attacks on our system when pools are perfectly 

protected. Each set of attacks results in a reduced return on investment for the attacker. 

This seems reasonable because the most damaging attacks under normal operating 

conditions are on pools. 

 

 

Figure 20.   Operator’s Resiliency Curve with alternative scenarios of (1) no defense, 
where attacks occur on dams and locks (denoted by red squares), (2) dams 
defended, where attacks occur on locks (denoted by green triangles), and (3) 
dams and locks are defended, where attacks occur on terminals (denoted by 
purple Xs). 
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Next, we consider the scenario of invulnerable locks and dams. Here we consider 

perfectly protected locks and dams, where the river is fully navigable. The best single 

attack occurs on the river transfer arc of a major coal supplier. This attack causes coal to 

be shipped via rail, rather than river. When the attacker makes two simultaneous attacks, 

the attacks occur on the river transfer arc and the rail transfer arc of the same major coal 

supplier. This causes all coal supplied by this mine to be routed on the most expensive 

mode of transportation: road. Finally, with three simultaneous attacks, this major coal 

supplier is completely cut off from the network and is unable to move coal onto the 

network without sending flow along an attacked arc. This incurs an arbitrarily high cost, 

depending on the penalty we set. In practical terms, this action equates to a cost to 

reconstitute the damaged arc to enable the movement of coal. The Operator’s Resiliency 

Curve in Figure 20 (denoted by purple Xs) illustrates this behavior. Initially, the return on 

investment for the first two attack sets is low for the attacker. But, the third attack is 

significantly harmful.  

E. DISCUSSION 

 The USCG mission emphasizes the defense of waterway infrastructure, so we 

initially focus on the attack and defense of maritime CI/KR. Not surprisingly, attacks that 

target dams result in worst-case increase to operating cost, even after river operations 

adjust flows to minimize transport costs. If the USCG could perfectly protect dams, we 

observe that, in order to create a worst-case increase in transport cost, an intelligent 

attacker would instead target locks, but the return on investment for mounting attacks is 

reduced. Perfect defense of dams and locks shifts the attention of an attacker to coal 

terminals. In this case, attacking the ability to transfer coal on or off the river at an 

individual terminal results in less overall cost increase, unless an attacker can isolate a 

terminal by interdicting completely its ability to send or receive coal. In this case, the 

resulting “cost” of that isolation can be arbitrarily high, depending on the economic 

consequences to that terminal. This study considers only a simple cost of isolation that is 

the same for all terminals; thus the terminals targeted are the ones that move the largest 

volumes of coal.  
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VII. CONCLUSION 

The Port of Pittsburgh is a valuable target. With approximately $9 billion in 

annual commerce, the second largest inland port in the U.S. could be significantly 

impacted with just a single attack, causing operating costs to rise nearly 150 percent. 

Adversaries are plotting to disrupt commerce, as evidenced by the recent planned attack 

on a bridge in neighboring Ohio (Barrett 2012). The use of system interdiction techniques 

allows us to identify the most critical infrastructure in our system; in our case dams, 

which support pool navigability. This modeling method allows us to quantify impacts to 

operating costs and consider various alternative scenarios concerning defense tactics and 

schemes.   

The analysis in this thesis represents an important step forward in assessing the 

resilience of the Port of Pittsburgh, and the Inland Marine Transportation System more 

broadly, but there is much more to do.   

First, the focus in this thesis on the Monongahela River should be extended to 

include the entire Three Rivers. We expect broader analysis to confirm the significance of 

the Monongahela River as a critical segment of the Port of Pittsburgh. We also expect an 

expanded study to expose valuable targets along the Ohio River, as this river connects 

our AOI to the larger Marine Transportation System river network. Insights may include 

a clearer understanding of intermodal transportation behavior as travel distances increase. 

Second, it will be important to conduct analysis for horizons longer than a single 

week. In practice, planning for coal movements occurs over weeks and months, and the 

repair times for different system components (e.g., dams, locks, transfer terminals, and 

bridges) could yield different implications for what is most critical. For example, if dams 

have the longest repair times, then their loss naturally has a bigger impact on the long-

term system operation. 

Third, just as different system components can have significantly different repair 

times, it is reasonable to expect that attacks on these components might require a 

different level of effort. Following the example in Salmerón et al. (2011), it might be 
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reasonable that the attacker’s “budget” might be measured in terms of personnel rather 

than attacks, with each component requiring a different number of individuals for attack 

success.  

Fourth, because the Attacker-Defender model has provisions to allow the operator 

to move coal in anticipation of an announced disruption to occur in the future, it is 

possible to use this model to assess the impact of scheduled maintenance. Exploring this 

model capability in the context of real operations could prove insightful. 

Finally, the analysis in this thesis has taken a limited view of “defensive 

investment,” but the model and technique can be extended to consider a comprehensive 

Defender-Attacker-Defender formulation in which one considers a list of possible 

investment options, ranging from hardening to redundancy to capacity expansion, each 

with its own cost. Then given a fixed limited investment, the DAD model will identify 

the combination(s) of investment that yield the most resilient system. Moreover, it then 

becomes possible to consider how different levels of investment lead to improved 

resilience. Identifying such defensive “return on investment” tradeoffs will be an 

important avenue for future work, particularly in an environment of diminished fiscal 

budgets. 
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